Anchorman Power 1200 Installation, Operation and Maintenance Instructions #### CONTENTS #### 1. PARTS - 1.1 Exploded Diagram - 1.2 For Future Reference - 1.3 Parts List #### 2. SPECIFICATION - 2.1 Gipsy Suitability - 2.2 Performance - 2.3 Materials - 2.4 Package Contents (Checklist) #### 3. ACCESSORIES #### 4. PLANNING THE INSTALLATION - 4.1 Additional Requirements - 4.2 Electric Cable Selection #### 5. INSTALLATION - 5.1 Fitting Windlass to Deck - 5.2 Wiring - 5.3 Joining Rope to Chain #### 6. OPERATING INSTRUCTIONS - 6.1 Safety First! - 6.2 Function of Clutch - 6.3 Function of Gipsy Pawl - 6.4 Function of Friction Cone - 6.5 Letting Go Under Gravity - 6.6 Letting Go Under Power - 6.7 Lying to Anchor Safely - 6.8 Hauling In - 6.9 Warping - 6.10 Emergency Hand Operation - 6.11 Operating Tips #### 7. IMPORTANT USER INFORMATION #### 8. MAINTENANCE - 8.1 General Recommendations - 8.2 Dismantling - 8.3 Winter Laying Up #### 9. WARRANTY LAWRENCE # 1.3 PARTS LIST | 48
60
61
70
71
72
73
73
74
74
75
076
076
076
076
077
0127
0127 | | 48
60
61
70
71
72
73
73
74
75
76
976 | 48
60
61
70
71
72
72
73
74
75
67 | 48
60
61
70
71
72
73
74
75
676 | 48
60
61
70
71
72
73
74
75 | 48
60
61
70
71
72
73
74 | 48
60
61
71
72
73
74 | 48
60
61
70
72
73 | 73
73 | 77 70 6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 70
61
72 | 77 0 0 0 48 | 48
60
61
70 | 70
61
70 | 60
61 | 60 48 | 66.6 | 48 | | 47 | | | | | 45 | 44 | | 43 | 42 | 4: | . (| 4 f | 32 | 31 | 30 | | | | | | D24 | | | 2 5 | | | 18 | 17 | | | _ | <u>1</u> 3 | 12 | | _ | | _ | თ
 | O1 | |
ა .
 | + | lumber | | Part | .3 PAHIS | 0 | |---|--|--|--|---|--|--|--|----------------------------------|----------|---|----------------|---------------|----------------------|------------------|----------|------------------------|-------|------------|--------|-------|-------|-----------|------------|---|------------------|--------|-------|-----|--------|----------------|-----|---------------|-------|----------------|----|---|------------|---|--------------|--------|--------|--------|-----|-------------------|--------------|------------------|------------------|----------------|---|---|------|------------|--------------|-----------|-----|-------------|-----|--------------------|-------------|------------|----------------|-------|-------------|---|----------|----------|---| | Washer Screw Socket Screw Key Socket Screw Plug Gipsy/Drum Carrier Gipsy Carrier Gipsy Carrier Gipsy Cap Sheet Winch Handle | er
t Scre
t Scre
t Scre
t Scre
t Scre | her w let Screilet Sc | her w et Scre et Scre | her w tet Screw tet Screw tet Screw | Screw
Screw | Screw
Screw | er
t Screw | 9 | Washer | Washer | | Friction Cone | | Fleming Stripper | Fleming | Mainsnatt (Gipsy Uniy) | (470) | aft (Ginev | Washer | Screw | Screw | Ceal Line | Seal Liner | | Gearbox Assembly | Viotor | Motor | Xev | Washer | Distance Flece | | Adantor Plate | Screw | Distance Piece | | | | | Drive Roller | Washer | Washer | Washer | NOT | No. of the second | Crow Circuit | Internal Circlin | External Circlip | Sealed Bearing | | | D in | Kev | Drive Roller | vamepiate | | Pawl Spring | Paw | Drive Pawl Carrier | Clutch Cone | Gipsy rawi | Rasenlate | Gipsv | Description | | | SLISI | _ | | -00 | > (| | > ~ | ٠ (| > (| > | _ | _ | . 1 | ა . | _ | _ | | _ | _ | c | > ~ | | - | 4 | _ | ٠. | ٠. | _ | _ | _ | ٠. | _ | _ | _ | ٠. | _ (| ω | | | _ | ٠. | _ | N | 0 | _ | · 00 | 0 | 1 0 | ა . | - | N | | _ | 4 | | | ω | _ | ٠. | ພ | ω | _ | _ | _ |
<u>.</u> | | 447 | 1 | Quantity | | | | 00- | | -00- | 0- | 1 1 0 1 | -0- | 0 - | _ | | ^ | ა . | _ | _ | ٠. | _ | | | . (| | _ | 4 | _ | | | _ | _ | _ | ٠. | _ | _ | | ٠. | (| 0 | 0 | | | 5 (| 0 | 0 | _ | 0 | α | 0 | 1 0 | ა. | | N | _ | | | _ | _ | បា | _ | ٠ (| ω | ω | _ | _ | _ |
<u>.</u> . | ᆁ | 448 | | nti l | | | #### 2. PLANNING THE INSTALLATION #### 2.1 Gipsy Suitability The rope/chain gipsy enables the windlass to be used for hauling rope and chain without the need to transfer from warping drum to gipsy. It is ideally suited to anchor rodes which consist of rope with a chain tail. Rope used with rope/chain gipsies should be three strand nylon. The RC172 gipsy is designed to suit 12 mm ($^{1}/_{2}$ ") rope, **2.3** the RC162 and RC152 gipsies to suit 16 mm ($^{5}/_{8}$ ") rope but they all may accept diameters that are plus or minus 3 mm ($^{1}/_{8}$ ") depending on the particular lay of the rope. Because of wide variations in rope type and construction some experimentation may be required. On no account should multiplait ropes be used! The 180 & 181 gipsies handle chain only. Chain should be chosen to suit gipsies as follows:- | GIPSY | CHAIN | PITCH
(mm) | SIZE | |-------|--|---------------|---| | RC152 | US NACM | | 5/16" | | RC162 | S-L 0058004
S-L 0058604 Stainless | | 9·5 mm
10 mm | | | US BBB | 27.7 | 3/8" | | | French NFE 26011
German DIN 766
Italian
Norwegian
Australian PWB & Beavers
Australian Grade 'L' | | 10 mm
9&10 mm
10 mm
1/ ₄ "
8 mm
10 mm | | RC172 | S-L 0058002
S-L 0058003
S-L 0058603 Stainless | | 1/ ₄ "
8 mm
8 mm | | | US Transport 'G7' (ISO Spec.
US BBB
US High Test 'G4' (ISO Spec. | 25.4 | 1/4" 5/16" 5/16" | | | French NFE 26011
German DIN 766
Italian
Norwegian | | 8 mm
8 mm
8 mm
1/4"
5/16"
8 mm | | | Australian | | 8 mm | | 180 | Accoloy | | 9/32" | | 181 | German DIN 766(86) | | 6 mm | Depending on manufacture, other chains in the range from 6 mm to 10 mm and 1/4" to 3/8" may be suitable with one of the above gipsies. Should you have difficulty in matching a gipsy to your chain please consult your local agent or Simpson-Lawrence Ltd. #### 2.2 Package Contents Windlass Above Deck Assembly Motor & Gearbox Unit Mounting Studs, Washers & Nuts Socket Screw Key Safety Instructions D1000-3 Instruction Manual D1012-4 Mounting Template D1018-1 #### 3 Additional Requirements Each windlass installation requires: - a. A standard sheet winch handle. - b. A solenoid for a single direction installation, or a boxed pair of solenoids for a reversing installation. (Unless the High Load Foot switch only is used) - c. A control switch (or switches) by preference. - d. A Breaker/isolator for overload protection which can also be used as a main isolating switch. (We recommend the ones listed under '3. Accessories') - e. The following tools: Flat Bladed Screwdriver 9.5 mm (3/8") Diameter Drill Jig Saw or Trepanning Tool 13 mm AF Spanner (wrench) Crimping Pliers / Wire Stripper - c. Sealant - g. Suitable electrical cable and crimp terminals. #### 2.4 Electric Cable Selection To achieve the best performance and safeguard your electrical system it is essential that any electric windlass is fitted with sufficiently large diameter cable to cope with the current draw imposed upon it and to keep the voltage drop within acceptable limits. In any circumstance voltage drop due entirely to cable resistance should not exceed 5%, roughly 0.5V for a 12V installation and 1.0V for a 24V one. The following tables give recommended cable sizes. The recommendations are based on the total length of cable required, from the battery to the windlass and back to the battery, following the route of the cables. (See the Wiring diagram for the definition) DO NOT confuse Cable Length with the length of the vessel! #### METRIC OR STARTER CABLE | | Cable l | _ength | Size | |---------|---------|--------|------| | VOLTAGE | m | ft. | mm² | | 12 | 8·8 | 29 | 16 | | | 10·1 | 33 | 20 | | | 14·0 | 46 | 25 | | | 19·5 | 64 | 35 | | | 21·6 | 71 | 40 | | | 26·4 | 87 | 50 | | 24 | 27·2 | 89 | 15 | | | 29·5 | 97 | 16 | | | 33·7 | 110 | 20 | | | 46·8 | 153 | 25 | #### **AMERICAN CABLE** | VOLTAGE | Cable Length ft. | Cable Size
AWG | |---------|----------------------------|-------------------------| | 12 | 24
39
62
78
98 | 6
4
2
1
1/0 | | 24 | 81
129
206 | 6
4
2 | Thin wire of 1.5 mm² cross sectional area, 21/0.30 PVC covered (American equivalent 14 AWG) is required for the control switch circuits. This is used to connect the switch(es) to the solenoid(s) and the Breaker/Isolator Indicator light to the main circuit. # 3. ACCESSORIES | ltem | List Number | |---|-------------| | 70 Amp Breaker/Isolator 12 Volt Installation | 0050711 | | 50 Amp Breaker/Isolator 24 Volt Installation | 0050710 | | • | | | 12 Volt Solenoid Single direction | 0052505 | | 24 Volt Solenoid Single direction | 0052506 | | 12 Volt Solenoids Reversing 24 Volt Solenoids Reversing | 0052509 | | 24 Volt Solenoids Reversing | 0052510 | | 3 | | | Push Button Switch Single direction | 0052512 | | Foot Switch Single direction | 0052514 | | High Load Foot switch Single direction | 0052516 | | gg | | | Joystick Control Switch Single or Reversing | 0052511 | | Hand Remote Switch Single or Reversing | 0052515 | | angi an increasing | | | Push Button Switch Reversing | 0052513 | | Foot Switch X 2 Reversing | 0052514 | | Touch Pad Control Reversing | 0052522 | | Todom and Common | 000000 | | Rode Management System | 0044901 | | Tiods Management System | 0011001 | | Chain Pipe Flat type with cover | 2417201 | | Chain Pipe Hooded type | 2417202 | | Trouded type | 2117202 | | 10" Operating Handle Autolock | 2756700 | | 10" Operating Handle Standard | 2756900 | | To Sporating Hariato | 2,00000 | | Windlass Cover White | 0044701 | | Windlass Cover Blue | 0044702 | | Timalago Covoi | 30-1-7 OE | #### 4 SPECIFICATION #### 4.1 Performance #### **Maximum Pull** | | 12V Model | 24V Model | |---|------------------|--| | Chain in Gipsy
Rope in Gipsy
Rope on Drum | 570 kg (1255 lb) | 610 kg (1345 lb)
655 kg (1440 lb)
635 kg (1400 lb) | ## **Typical Working Figures** | | Load | Speed | Current Draw | |-----|--------------------------|----------------------------------|--------------| | 12V | 100 kg
<i>220 lb</i> | 12 m/min
<i>39-5 ft./min.</i> | 70 Amp | | 24V | 1000 kg
<i>220 lb</i> | 14 m/min
<i>46 ft./min.</i> | 32 Amp | #### 4.2 Materials | Drum/Cap | Hot Stamped Bronze | |----------------|--------------------| | Gipsy | Hot Stamped Bronze | | Internal Pawls | Stainless Steel | | Base Plate | Hot Stamped Bronze | | Mainshaft | Stainless Steel | | Gearbox | Aluminium Case, | | | | Steel/Bronze Gear Set Electric Motor 19 Weight G 1000 W, 4 Pole Permanent Magnet Gipsy/Drum Model 20-5 kg (45 lb) Gipsy Only Model 19-0 kg (42 lb) # 5. INSTALLATION ### 5.1 Fitting Windlass to Deck - 5.1.1 If the deck top is not flat a suitable mounting pad may be required to take up camber or sheer. Decks which are thin, of foam or balsa laminate construction, will require a backing piece in order to spread the loads which will be applied locally to the deck while the windlass is in use. Care must be taken if the deck is of uneven thickness and a mounting pad and/or backing piece fitted that the top and bottom surfaces are parallel for correct alignment. - 5.1.2 Place the windlass on the deck or mounting pad in the desired position and check the line up of the chain or rope with reference to the stemhead roller and the chain locker below. - Check that there is sufficient room to fully rotate a bisquare winch handle without obstruction. - 5.1.3 Rode lead from the bow roller should be in the same plane as the centre of the gipsy so any deck pad may also be required to be angled. There must be sufficient vertical fall for the chain or rope, even with a full locker, to draw the rode from the gipsy when hauling in. - 5.1.4 Place the mounting template in the desired position. Cut a 55 mm diameter (2 3/8") clearance hole for the baseplate and mainshaft to pass through and four 9.5 mm (3/8") holes for the studs. The studs supplied are 100 mm (4") long to suit decks and mounting pads up to 70 mm (2 3/4") thickness. For thinner decks or some installations without mounting pads it may be necessary to reduce the length of the mounting studs. - 5.1.5 Screw the stude into the baseplate, this can best be done by putting two nuts on the opposite end, one of which acts as a lock nut. Use this technique on each of the four studs - 5.1.6 Apply a suitable sealant to the bottom of the base plate, the mounting pad and around the studs. Place the windlass in position. - 5.1.7 Apply grease to the mainshaft below deck then offer up the gearbox and secure it firmly to the studs with the nuts 5.2 and washers supplied. NB If using silicone or other rubbery type sealants it is advisable to allow curing of the sealant before final tightening of the mounting bolts. - 5.1.8 Please note the following when fitting a chain pipe: - a. When using rope or rope/chain combination rodes in the gipsy, we strongly recommend the chain pipe be fitted close to the stripper as shown on the mounting - b. The chain pipe should, where possible, be fitted against the baseplate of the windlass in alignment with 5.2.2 Control Switch Installation the stripper as detailed on the template. In certain installations this may not be possible - e.g. where the windlass cannot be sited directly over the chain locker - - and under such restrictions, the chain pipe can be fitted remotely (see note d. below) but must always be in direct alignment with the stripper so that the rode runs in a straight line off the gipsy (see diagram). - c. It is essential that the rode leaves the gipsy and enters the chain pipe horizontally, this may entail placing packing below the chain pipe in order to achieve this, especially if the windlass has had to be mounted on a deck pad. - d. If mounting the chain pipe remotely from the windlass, it is necessary to ensure that the minimum fall of rode within the full chain locker is still greater than the distance between the stripper and the chain pipe. This enables gravity to aid the stripping of the rode from the gipsy. #### Wiring 5.2.1 General Recommendations The wiring system should be of the two cable fully insulated return type, which avoids possible electrolytic corrosion problems. Most modern installations are negative return (negative earth) but polarity should be checked. A Breaker/Isolator must be included in the windlass wiring circuit. This protects the wiring and prevents undue damage to the windlass motor, in the event of it being stalled by an excessive load in service. The recommended Breaker/Isolator should be mounted in a dry, readily accessible place, as it must be manually reset should an overload occur that causes it to trip to the off position. If not using the Breaker/Isolator recommended, an alternative must have identical characteristics. When fitted, Solenoids should be sited in a dry location as close to the battery as possible. NB Crimp terminals should be used on all wire ends wherever possible for good electrical contacts. Follow the mounting instructions supplied with the switch. Remember, when using more than one Control Switch it is important to their correct operation that they are wired in a parallel circuit. **WIRE** FROM TO Thick cable Positive battery terminal Breaker/Isolator Thick cable Breaker/Isolator High Load Foot switch Thick cable High Load Foot switch Positive motor terminal Thick cable Negative battery terminal Negative motor terminal Thin wire Breaker/Isolator Indicator Light Main circuit (positive) Thin wire Breaker/Isolator Indicator Light Main circuit (negative) TO **WIRE FROM** Thick cable Positive battery terminal Breaker/Isolator Thick cable Breaker/Isolator Solenoid Thick cable Positive motor terminal Solenoid Negative motor terminal Thick cable Negative battery terminal Control switch(es) Thin wire Solenoid Main circuit (positive) Thin wire Control switch(es) Main circuit (negative) Thin wire Solenoid | WIRE Thick cable Thick cable Thick cable Thick cable Thick cable | FROM Positive battery terminal Breaker/Isolator Solenoid box Negative battery terminal Solenoid box | TO Breaker/Isolator Reversing Solenoid box Motor Reversing Solenoid box Motor | |--|---|---| | Thin wire | Solenoid box | Control switch(es) | | Thin wire | Solenoid box | Control switch(es) up terminal | | Thin wire | Solenoid box | Control switch(es) down terminal | **NB** If you are not sure that you understand the above guidelines seek professional advice. #### **JOINING ROPE TO CHAIN** - 5.3.1 With whipping twine or similar, seize your rope 300 mm 6.5.1 Disengage the gipsy pawl. (12") from the rope's end and unlay strands. - 5.3.2 Pass one strand through the chain end link from one side and the other two strands from the opposite side. - 5.3.3 Remove seizing and complete back splice in normal manner for two full tucks. - 5.3.4 With a hot knife pare down the three strands by one third and continue with two further tucks. - 5.3.5 Pare strands down by another third and finish with another two tucks. - 5.3.6 Cut away remaining tails. This method of joining is designed to minimise chafe 6.6 Letting Go Under Power between rope and chain but as a matter of prudent 6.6.1 With a power reversing installation the anchor and rode seamanship it should be checked regularly and remade if there is any evidence of wear. Because of wide variations in rope type and construction some experimentation may be required. #### **OPERATING INSTRUCTIONS** 6. #### 6.1 Safety First! Adopt the habit of removing the handle from the clutch nut, drum or gipsy cap, when it is not being used, to avoid personal injury and the possibility of inadvertently releasing the clutch! Ensure that fingers and loose clothing are kept clear of personal injury also! Always ensure that there are no swimmers nearby when dropping your anchor. #### **Function of Clutch** The clutch engages and disengages the gipsy from the windlass drive. It is designed to operate with a standard sheet winch handle, if you do not posses such an item 6.7 please refer to the 'Accessories' paragraph for further 6.7.1 Boats lying to their anchor in a high swell or heavy details. Insert the sheet winch handle into the central clutch nut (gipsy/drum models), or offset bi-square hole (gipsy only anti-clockwise. Clockwise rotation engages the clutch, giving a breaking action which controls the speed at which rode runs out under gravity. To fully engage the clutch, lock the gipsy pawl into any notch on the gipsy flange whilst rotating the sheet winch handle clockwise. #### **Function of Gipsy Pawl** The gipsy pawl, item 4, swivels in and out of engagement. It has been designed such that when engaged in the gipsy, anti-clockwise rotation of the gipsy is resisted. However, clockwise rotation of the gipsy during hauling in will automatically disengage it. For this reason, when the pawl is being used to help in fully tightening the clutch, it must be actively held in position. #### **Function of Friction Cone** In normal use the Friction Cone, part 72 is compressed by the Socket Screw, part D76 or G76, depending on the model. This is achieved using the Socket Screw Key, part 75. The friction cone gives the gipsy a positive power out capability that enables it to haul the rode out from the chain locker. However, should there be an obstruction to the rode coming out of the locker, the friction cone slips to avoid damage to the deck or windlass. It is only necessary to disengage the friction cone when the windlass is to be operated manually (see 6.10 below). #### **Letting Go Under Gravity** - 6.5.2 Slacken the clutch slowly with the handle by turning it anti-clockwise until the gipsy begins to turn and the rode runs out. - 6.5.3 Note that the handle may also be used as a brake and the speed at which the rode runs out can easily be controlled by moving it clockwise or anti-clockwise. - 6.5.4 When sufficient rode has been let out, fully tighten the clutch (see 6.2 above). - 6.5.6 Re-engage the gipsy pawl. - can be lowered without slackening off the clutch. - 6.6.2 Check that the clutch is fully tightened by inserting the handle and rotating it clockwise (see 6.2 above). - 6.6.3 Disengage the gipsy pawl. - 6.6.4 Activate a 'down' control switch. - 6.6.5 Should the windlass turn, yet fail to power out, ensure that the rode has not become jammed in the chain pipe below deck and that the Socket Screw (part D76/G76) is fully tightened by inserting the Socket Screw Key (part 75) through the clutch nut or gipsy cap hole as appropriate until the key engages with the Screw. The key should be turned clockwise to fully tighten the Screw. - the rode and gipsy whilst they are in motion to avoid 6.6.6 Release the 'down' control switch when sufficient rode has been lowered. - 6.6.7 Please note, activating both UP and DOWN controls simultaneously will stop the windlass if it is connected correctly to the Simpson-Lawrence solenoid box listed earlier. #### Lying to Anchor Safely - weather conditions will snub on the anchor or mooring rope and this can cause the rode to slip or apply excessive loads to the windlass. - models). Disengage the clutch by rotating the handle 6.7.2 For maximum safety the windlass must not be left to take the entire force from the anchor rode and a bridle should be used to transfer the load to a mooring cleat or bollard. Alternatively, the rode can be removed from the windlass 7. gipsy and made fast directly to a bollard or sampson post. #### 6.8 Hauling In - 6.8.1 Ensure the clutch nut or gipsy cap is fully tightened by turning the clutch handle clockwise. - 6.8.2 Press an 'up' control. The speed of hauling depends on the load on the anchor and will increase after the anchor breaks out. - 6.8.3 Avoid the damage caused by bringing the anchor hard up against the stemhead fitting. The rode should be inched by careful use of the controls. - 6.8.4 Should the windlass stall, switch off and wait a few seconds before trying again. If the windlass fails to operate at all check to see if the Breaker/Isolator needs to be reset. It is important to the future good performance of the windlass' motor that the windlass is not allowed to stall for more than a few seconds. It is sensible to avoid stalling your windlass whenever possible. #### 6.9 Warping (Gipsy/Drum Only) - 6.9.1 If the gipsy is in use, ensure that the gipsy pawl is engaged. - 6.9.2 Slacken the clutch nut to disengage the gipsy clutch. - 6.9.3 The warping drum can now be made to revolve independently of the gipsy under power. - 6.9.4 Rope/drum slippage can normally be overcome by increasing the number of turns of rope on the drum. #### 6.10 Emergency Manual Operation (Loss of Power) - 6.10.1 Insert the Socket Screw Key (part 75) through the centre of the clutch nut (GD models), or gipsy cap (G models, after removing the hole plug, part 77) until the key engages with the Socket Screw (part D76 or G76). - 6.10.2 Turn the key anti-clockwise and slacken the Screw by one revolution. - 6.10.3 Insert a Sheet Winch Handle into the clutch nut (GD models) or offset hole (G models) and rotate it clockwise. - 6.10.4 The above procedure allows rapid recovery of the rode and anchor under light loads as well as emergency recovery in the event of power failure. - 6.10.5 When finished using the windlass in manual mode, remove the Sheet Winch Handle from the windlass and re-tighten the central Socket Screw (see 6.4 above). #### 6.11 Operating Tips - 6.11.1 When anchoring, it is best to allow the rode to run out slowly, allowing the vessel to take up sternway before full scope is let out. This helps prevent the rode from becoming tangled on top of your anchor on the sea bed. - 6.11.2 To aid anchor recovery, we recommend that the vessel's engine be used to assist by moving the vessel towards the 8.3 anchor. We do not recommend that the vessel is motored over and beyond the anchor, as this can cause the rode to damage your topsides. - 6.11.3 When mooring stern to, at a suitable distance from the jetty, deploy the anchor to preventing the bows from swinging. Gently pay out the rode under the influence of the stern way of the vessel. By stopping the windlass, the anchor can be used to restrain the vessel as it approaches the jetty. Make fast your vessel with warps from the stern. #### **IMPORTANT USER INFORMATION** Classification Societies require that a vessel lying to anchor should have its rode held by a chain stopper or equivalent strong point as windlasses are not designed to withstand the loads generated under storm conditions. This rule should be applied to all craft! At all times it is the responsibility of the boat user to ensure that the anchor and rode are properly stowed for the prevailing sea conditions. This is particularly important with high speed power boats as an anchor accidentally falling overboard whilst under way can cause considerable damage. An anchor windlass is mounted in the most exposed position on a vessel and is thus subject to severe atmospheric attack resulting in a possibility of corrosion in excess of that experienced with most other items of deck equipment. As the windlass may only be used infrequently, the risk of corrosion is further increased. When the windlass is mounted in an anchor well with a closing lid, due to lack of ventilation and consequent high saline conditions the rate of corrosion is accelerated. It is essential that the windlass motor and gearbox is given the necessary maintenance to avoid external corrosion. This is of even greater importance when the windlass is installed in an anchor well! #### 8. MAINTENANCE #### 8.1 General Recommendations Isolate the windlass electrically, before carrying out any maintenance work. After the first two or three anchor recoveries, check that the windlass is still fastened tightly to your deck as it should now be 'bedded-in'. For smoothest operation of the clutch ensure that the clutch mechanism and gipsy exterior is kept free from excess salt deposits. Regularly wash down the exterior of your windlass with fresh water. The gearbox and its bearings have been lubricated for you and should require no internal attention. As with all types of similar equipment it is advisable to run the windlass occasionally to circulate the lubricant if nothing else. External moving parts should have a few drops of oil applied occasionally. Examine all electrical connections for possible corrosion. Clean and lightly grease as necessary. #### 8.2 Dismantling At least once a year dismantle the above deck parts. Clean them thoroughly and apply a small amount of marine grade teflon grease to all bearing surfaces, then re-assemble. In particular apply grease around the exterior of the deck seal, part 16. #### 3 Winter Laying Up As with all items of marine equipment poor installation or neglect is often responsible for damage caused during the winter lay up period. Given correct installation and maintenance your windlass will require little attention prior to, or after, winter lay up. Check between the windlass deck housing and deck for signs of water ingress. Should it occur, remove, clean and reseal the deck plate.